Degree-1 Physics (Hons) Lecture 3 on the topic Damped Harmonic Oscillator.

Pegree-1 21
Degree-1 Physics (Hons)
Lecture: 3
Damped Harmonic Oscillator:
maimonic Oscillator >
Start with an ideal harmonic oscillator, in which
there is no resistance at all,
F=-kx.
$md^2x + kx = 0$
Now att where k is force constant
let's add some resistance we will make the assumption
(i) The Force is always opposite to the direction of motion.
(ii) Force (resistive force) depends linearly on the magnitude
of the velocity.
F = - 62 where b is damping constant
then the sum of forces on the object becomes,
$m\frac{d^2x}{dt^2} = -\kappa x - b v$
dt
$m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0 - (ivez \frac{dx}{dt})$
dt dt ett)
Equation (1) in known as damping equation
Equation D is known as damping equation vow the solution of equation in given as
ht
$\chi(t) = A \cos(\omega t + \phi) e^{\frac{bt}{2m}}$
$\frac{dx}{dt} = A(\frac{-b}{2m}) \cos(\omega t + \phi) = \frac{bt}{2m} - A \cos \sin(\omega t + \phi) = \frac{bt}{2m}$
$\frac{d^2x}{dt^2} = A\left(\frac{b}{am}\right)^2 \cos(\omega t + \phi) = \frac{bt}{2m} + \frac{A\omega b}{am} \sin(\omega t + \phi) = \frac{bt}{2m}$
12 = A (b) Cop (w++4) e 2m + 2m m (wx+4) e 2m
$+ \frac{A \omega b}{2m} \sin(\omega t + \phi) e^{\frac{bt}{2m}} - A \omega^2 \log(\omega t + \phi) e^{\frac{bt}{2m}}$
+ Aw Sin (wx+q) cam - Aw Bos (wx+q) cam
, -bt
$\frac{d^2x}{dt^2} = \frac{A}{4} \frac{b^2}{um^2} \frac{(08(\omega t + \phi)e^{\frac{bt}{2m}} + 2A\omega b}{2m} \frac{8in(\omega t + \phi)e^{\frac{bt}{2m}}}{2m}}{A\omega^2 (08(\omega t + \phi)e^{\frac{bt}{2m}}}$
at 4m2 _ Aw2 cos(w+++) = sm

	Date / / Page No. 3
-	Exitical clamping => $\omega^2 = \omega_0^2 - \frac{b^2}{4m^2}$
	for critical clamping w=0 w=2 - b^2 = 0
	$\omega_0 \ge \pm \frac{b^2}{4m^2}$ $\omega_0 = \pm \frac{b}{4m}$
	uncler this condition the oscillator never really oscillates.